Hay un positivo para quien lo resuelva.
SOLUCIÓN
Nina Guindilla es más rápida que Pepe. ¡Solo tardo un tercio de recreo!
Profe, mire... Hay en total 9! = 1·2·3·...·9 = 362880 números así... De ellos, 8! = 40320 terminan en 1, y otros tantos en 2, en 3, etc., por lo que la suma de las unidades de todos los números valdrá (1+2+3+...+9)·40320 = 45·40520 = 1814400. Esto mismo se puede hacer con las decenas, las centenas, etc., por lo que la suma será (1+10+100+...+100000000)·1814400 = 111111111·1814400 = 201599999798400, o sea, doscientos un billones quinientos noventa y nueve mil novecientos noventa y nueve millones setecientos noventa y ocho mil cuatrocientos. ¡Casi nada!
El reto de Nina también jugaba con las cifras del sudoku:
Si colocamos las 9 cifras del sudoku en los círculos de modo que 3 cifras alineadas siempre sumen la misma cantidad... ¿Qué cifra puede ir en el centro?
No hay comentarios:
Publicar un comentario