sábado, 28 de noviembre de 2020

1556. El primer centro isogónico...

     Pepe Chapuza trajo una extraña herramienta. Consistía en tres varillas coplanarias de la misma longitud unidas por un extremo y separadas entre sí 120º. (Parecían unos ejes de perspectiva isométrica.) Donde se juntaban las tres varillas había en realidad un agujerito. Pepe no nos dejó mucho tiempo con la curiosidad...

    Mire profe. Con esta herramienta puedo localizar el primer centro isogónico de un triángulo. Solo hay que deslizar y girar la herramienta hasta que pase por los tres vértices del triángulo... Meto la punta del lápiz por el agujerito y ahí esta. ¡El primer centro isogónico del triángulo! ¿Qué le parece que llame a esta herramienta "ye"?

 

    Pepe nos mostró cómo funcionaba su "ye"...


    Mi asombro era mayúsculo. Pero Pepe no había terminado...

 

    Profe. El primer centro isogónico de un triángulo minimiza la suma de distancias de un punto del triángulo a los tres vértices... Siempre que ningún ángulo del triángulo sea mayor de 120º. (Si es 120º tenemos un caso límite.)


    Había que investigar el asunto...


SOLUCIÓN

 

    Nina Guindilla investigó... ¡Ya lo creo!

 

    Profe mire. Si trazamos perpendiculares a las varillas de la "ye" por los vértices del triángulo obtenemos un triángulo equilátero:



     Para cualquier otro punto del triángulo (en negro), tenemos que la suma de distancias a los vértices del triángulo inicial   g + h + i  <  d + e + f   porque no todos los segmentos son perpendiculares a los lados del triángulo equilátero, pero   d + f + g  =  a + b + c   por el teorema de Viviani, con lo cual se tiene el resultado.


   
Le dimos un aplauso a Nina.


    Han quedado un par de asuntos en el aire...

    ¿Qué pasa si algún ángulo es mayor de 120º? ¿Y qué pasa con el segundo centro isogónico?

    Habrá que seguir investigando...


RESOLUCIÓN


    Yoyó Gaviota añadió una varilla más a la herramienta de Pepe. Ya no podía llamarse "ye", la llamó sencillamente "psi".


 

    Profe mire.

    La "psi" es mejor que la "ye" porque localiza al primer centro isogónico para todo tipo de triángulos.

    Y también al segundo centro isogónico. (Si un ángulo es de 60º tenemos aquí otro caso límite.)

    Mire los ejemplos:


 

    Yoyó no había terminado...

 

    Profe, el triángulo equilátero es un caso especial... No sé si no tiene segundo centro isogónico, o si tiene infinitos... Mire lo que pasa con los puntos de la circunferencia circunscrita...



No hay comentarios:

Publicar un comentario