Pedí a mis alumnos que buscaran ejemplos de parábolas en sus vidas y las respuestas fueron las de siempre: trayectorias de balones de fútbol, chorros de agua en las fuentes..., incluso las antenas parabólicas fueron mencionadas. Para Pepe Chapuzas las Matemáticas forman parte de su vida por lo que su respuesta fue muy diferente: las parábolas de Apolonio, las parábolas de Arquímedes... Aprovechando la respuesta de Pepe propuse como tarea de casa que demostraran el siguiente resultado de Arquímedes...
"Si s y t son dos rectas paralelas, s secante a una parábola en los puntos A y B, y t tangente a la parábola en el punto C, entonces el área del triángulo ABC es 3/4 del área encerrada entre la parábola y la recta secante".
Se suponía que tenían que utilizar la integral definida y la regla de Barrow para resolver el ejercicio pero Pepe mostró cómo lo había descubierto Arquímedes...
Investiga y resuelve el ejercicio de las dos maneras.
No hay comentarios:
Publicar un comentario