viernes, 25 de noviembre de 2016

681. Poliedros autoduales. RESOLUCIÓN

    Estábamos hablando de poliedros duales... Había explicado que dos poliedros eran duales (o conjugados) si se conseguía uno a partir del otro intercambiando cara por vértice y arista que separa dos caras por arista que une dos vértices. Como ejemplo expuse los clásicos sólidos platónicos: el octaedro y el cubo eran duales y asimismo eran duales el dodecaedro y el icosaedro... "Y para terminar" mostré que el dual de un tetraedro era otro tetraedro, esto es, que el tetraedro era autodual...


    Con Pepe Chapuzas es arriesgado decir "y para terminar" porque enseguida llegó su pregunta...

    Profe, ¿hay otros poliedros autoduales?

    Claro que los había... ¡Infinitos! Pero no respondí... Bueno, sí respondí pero con una orden: ¡buscadlos!
   
SOLUCIÓN

    Nina Guindilla encontró tres poliedros autoduales bastante sencillos:

    Mire, profe. Las pirámides como las de Egipto son pentaedros autoduales; las pirámides pentagonales son hexaedros autoduales; y hay otro hexaedro autodual..., ¿ve?

    La veda estaba abierta... ¿Quién se atrevería a cazar los heptaedros autoduales?

RESOLUCIÓN

    Yoyó Peluso demostró ser buen cazador... de poliedros...

    Profe, mire. Todas las pirámides son autoduales, por lo que la pirámide hexagonal es un heptaedro autodual... Pero aún hay más...

    En total, Yoyó localizó los 6 heptaedros autoduales... A partir de aquí los números se disparaban: autoduales hay 16 octaedros, 50 eneaedros, 165 decaedros, 554 endecaedros, 1908 dodecaedros, 6667 tridecaedros... 

martes, 15 de noviembre de 2016

680. Progresiones vectoriales. RESOLUCIÓN

    El ejercicio era sencillo... Había que dividir un segmento en 5 partes iguales: había que calcular las coordenadas de los 4 puntos intermedios por donde había que cortar... Pepe Chapuzas lo resolvió de la siguiente manera.
    Profe, mire. Si hay que dividir el segmento AF en 5 partes iguales mediante los puntos B, C, D y E, y si abcde y f son los vectores de posición de A, B, C, D, E y F respectivamente, entonces:
b = 4/5·a + 1/5·f
c = 3/5·a + 2/5·f
d = 2/5·a + 3/5·f
e = 1/5·a + 4/5·f
    Además, los vectores a, b, c, d, e y f están en progresión aritmética, y la diferencia de la progresión es el vector v = (fa)/5.

    El punto de vista de Pepe era curioso... ¡Una progresión vectorial! 
    Utiliza este procedimiento con los puntos A(1, –2, 5) y F(16, 3, –5) y explica lo que quiere decir Pepe con "progresión aritmética de vectores"...

SOLUCIÓN

    Nina Guindilla hizo los cálculos:

b = 4/5·(1, –2, 5) + 1/5·(16, 3, –5) = (4, –1, 3)
c = 3/5·(1, –2, 5) + 2/5·(16, 3, –5) = (7, 0, 1)
d = 2/5·(1, –2, 5) + 3/5·(16, 3, –5) = (10, 1, –1)
e = 1/5·(1, –2, 5) + 4/5·(16, 3, –5) = (13, 2, –3)

    Mire, profe. Las primeras coordenadas están en progresión aritmética. Y lo mismo ocurre con las segundas y las terceras:
1, 4, 7, 10, 13 y 16
–2, –1, 0, 1, 2 y 3
5, 3, 1, –1, –3 y –5

    Y las diferencias de las progresiones son 3, 1 y –2 tal como predijo Pepe:

v = ( (16, 3, –5) – (1, –2, 5) ) / 5 = (3, 1, –2)

    De hecho, se podían haber calculado los vectores de posición con el término general de la progresión, a+(n–1)·v, para n=2,3,4,5, o bien en cadena: a+v=b, b+v=c, c+v=d, d+v=e (y e+v=f).

    ¿Habrá "progresiones geométricas de vectores"?

RESOLUCIÓN

    Yoyó Peluso se imaginó una progresión geométrica vectorial... Si una progresión aritmética vectorial se conseguía sumando sucesivamente con un mismo "vector diferencia", ahora habría que multiplicar sucesivamente por el mismo "vector razón"... Pero el producto escalar no era compatible con esta idea y con el producto vectorial no valían las fórmulas de las progresiones geométricas... así que tuvo que ingeniarse otro tipo de multiplicación de vectores...

    Profe, mire. Si llamo "producto chapucero" a (x, y, z)(x', y', z') = (x·x', y·y', z·z') y "cociente chapucero" a (x, y, z)(x', y', z') = (x/x', y/y', z/z'), entonces parece ser que tiene sentido hablar de progresiones geométricas de vectores... (Aunque no venga a cuento ahora, el producto de un escalar por un vector equivaldría a k·(x, y, z) = (k, k, k)(x, y, z).)
    Volviendo al asunto, si empezamos con el vector (64, 81, 100) y vamos multiplicando chapuceramente una y otra vez siempre por el mismo vector razón (1/2, 1/3, –1/10), entonces vamos consiguiendo la sucesión de vectores...
(64, 81, 100) (1/2, 1/3, –1/10) = (32, 27, –10)
(32, 27, –10)(1/2, 1/3, –1/10) = (16, 9, 1)
(16, 9, 1)(1/2, 1/3, –1/10) = (8, 3, –1/10)...
    Además, teniendo en cuenta que el elemento neutro de la multiplicación chapucera (elemento unidad) sería el vector (1, 1, 1), la suma de los infinitos términos de esta progresión geométrica de vectores se podría calcular fácilmente:
(64, 81, 100)( (1, 1, 1) – (1/2, 1/3, –1/10) ) =
= (64, 81, 100)(1/2, 2/3, 11/10) =
= (128, 243/2, 1000/11).

    Puedo decir que Yoyó Peluso sabe matar 3 pájaros de un tiro... 
    Solo puedo añadir que las operaciones "chapuceras" y se denominan en realidad multiplicación y división de Hadamard. Son operaciones con matrices equidimensionales. (Los vectores del espacio son matrices de dimensión 1x3.) 
    También existe la potenciación o elevación de Hadamard: (2, –5, 7)^(3, 2, 0) = (8, 25, 1)...

viernes, 11 de noviembre de 2016

679. El mcd y las fracciones continuas. RESOLUCIÓN

    Pepe Chapuzas salió a la pizarra a corregir un ejercicio: había que calcular el máximo común divisor de los números 203 y 161. Supusimos que iba a factorizar los números y a aplicar la regla de "los factores comunes con el menor exponente" pero no... Utilizó el algoritmo de Euclides.
    Profe, mire: mcd(203,161) = 7. (Y mcm(203,161) = 203·161:7 = 4669.)

    No quedó ahí la cosa. Pepe continuó...

    Profe, mire. El algoritmo de Euclides también me permite escribir 203:161 como fracción continua: 203:161 = 1 + 42:161 = 1 + 1:(161:42) = 1 + 1:(3+35:42) = 1 + 1:(3+1:(42:35)) = 
= 1 + 1:(3+1:(1+7:35))) = 1 + 1:(3+1:(1+1:5))). O sea:
    O sea, abreviando, 203:161 = [1;3,1,5].

    Y no quedó ahí la cosa. Continuó...

    Profe, mire. El algoritmo de Euclides también me permite partir el rectángulo de dimensiones 203x161 en cuadrados:
    ¿Lo ve? Hay 1 cuadrado de 161x161, 3 cuadrados de 42x42, 1 cuadrado de 35x35 y 5 cuadrados de 7x7. En total 1+3+1+5 = 10 cuadrados.

    Pepe había puesto un ejemplo de cómo todo rectángulo con lados naturales se puede descomponer en una cantidad finita de cuadrados con lados naturales y, lo que es equivalente, de cómo todo número racional se puede escribir como una fracción continua finita... gracias al algoritmo de Euclides para calcular el máximo común divisor (mcd) de dos números naturales.
    ¿Se podrá calcular de la misma manera el mcd de dos polinomio?

SOLUCIÓN

    Nina Guindilla llegó a la conclusión de que sí. Y expuso un ejemplo...

    Voy a calcular el máximo común divisor de los polinomios  x5 + 2x4 + 6x3 + 3x2 + 8x – 2  y x4 + x3 + 5x2 + 2x + 6  con el algoritmo de Euclides: 
    Por lo tanto, mcd ( x5 + 2x4 + 6x3 + 3x2 + 8x – 2 , x4 + x3 + 5x2 + 2x + 6 ) = x2 + 2.

    ¡Estupendo! Nina ha conseguido calcular el mcd de dos polinomios cuya factorización no era viable con la regla de Ruffini...
    Investiga acerca del desarrollo de los números irracionales como fracciones continuas infinitas y nos lo cuentas...

RESOLUCIÓN

    Oigamos lo que nos quiere contar Yoyó Peluso...

    Profe, mire las siguientes fracciones continuas infinitas periódicas:
La razón áurea [1;1,1,1,1...] = (1+5)/2
La razón argéntea [2;2,2,2,2...] = 1+2
La razón broncínea [3;3,3,3...] = (3+13)/2
    Estos números irracionales tienen estos desarrollos como fracciones continuas ya que:
La razón áurea es solución de la ecuación 1+1/x = x.
La razón argéntea es solución de la ecuación 2+1/x = x.
La razón broncínea es solución de la ecuación 3+1/x = x.
    Puesto que, racionalizando...
1+2/(1+5) = 1+(5–1)/2 = (1+5)/2.
2+1/(1+2) = 2+(2–1)/1 = 1+2.
3+2/(3+13) = 3+(13–3)/2 = (3+13)/2.
    La razón áurea se encuentra en los lienzos de grandes pintores... Dalí sin ir más lejos...
    La razón argéntea se encuentra en los DIN A4: es argénteo el rectángulo que desechamos en un folio cuando en papiroflexia necesitamos un cuadrado de papel.
 
    De todos modos, mi fracción continua favorita es la del número e:
e = [2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1...].

viernes, 4 de noviembre de 2016

678. ¿Vemos una de romanos? RESOLUCIÓN

    Mire, profe. Me voy a disfrazar de romano. Fui a la tienda de disfraces y me probé un casco romano de la talla L que me quedaba pequeño, así que me probé otro de la talla XL... y me quedaba más pequeño todavía. Fui a protestar al dueño de la tienda y... me contestó en latín...
    ¿Quién resuelve esta adivinanza de Pepe Chapuzas?

SOLUCIÓN

    Mire, profe. Las tallas L y XL no eran "ele" y "equis ele", o sea, "large" y "extra large", sino que eran las tallas 50 y 40 escritas con números romanos: L = 50 y XL = 40. Pepe no tenía ninguna razón para protestar...

    Nina Guindilla ha acertado... y de paso ha propuesto los siguientes acertijos romanos:

    Convierte las siguientes igualdades falsas en igualdades verdaderas moviendo solamente un fósforo en cada una de ellas.
    Resuélvelos... pero recuerda que con los fósforos de verdad no se juega...

RESOLUCIÓN

    Aquí tenéis las soluciones de Yoyó Peluso:

jueves, 3 de noviembre de 2016

677. Porismas... RESOLUCIÓN

    Había mandado buscar a mis alumnos la definición de porisma. Tenían que encontrar además ejemplos. Pepe Chapuzas trajo la siguiente definición:

    Un porisma es un teorema que afirma, sobre cierto problema, que si se dan las condiciones para que exista una solución, entonces existen infinitas soluciones similares.

    Evidentemente necesitábamos ejemplos para entender esto...

    Mire, profe. El porisma de Steiner afirma que si una circunferencia es interior a otra circunferencia de modo que se puede encajar una cadena de circunferencias tantentes entre ellas, entonces existen infinitas cadenas de circunferencias tangentes que también se pueden encajar. Y todas estas cadenas tienen el mismo número de circunferencias... En el dibujo aparecen dos cadenas diferentes de 9 circunferencias encajadas entre las dos dadas...
    Busca otros porismas...

SOLUCIÓN

    Nina Guindilla encontró el porisma de Poncelet:
    Mire, profe. Si una circunferencia es interior a otra circunferencia de modo que podemos encajar un polígono circunscrito en la pequeña e inscrito en la grande (polígono bicéntrico), entonces existen infinitos polígonos (bicéntricos) encajados de la misma manera. Y todos estos polígonos (bicéntricos) tienen el mismo número de lados... En el dibujo se han representados tres triángulos entre las dos circunferencias dadas.
   
    En ambos porismas tiene que haber una relación entre los radios de las circunferencias iniciales, la distancia entre sus centros y el número de elementos encajados (circunferencias de las cadenas de Steiner o lados de los polígonos de Poncelet). ¿Qué relación? 

RESOLUCIÓN

    Mire, profe. Si R es el radio de la circunferencia grande, r el de la pequeña y d es la distancia entre sus centros entonces tenemos para el porisma de Poncelet las siguientes relaciones con triángulos (teorema de Euler) y con cuadriláteros (teorema de Fuss)...

Teorema de Euler: 1/r = 1/(R+d) + 1/(R–d).             Teorema de Fuss: 1/r2 = 1/(R+d)2 + 1/(R–d)2.
    ¡Bonitos teoremas ha encontrado Yoyó Peluso! Solo tengo que matizar que hay muchos teoremas que reciben el nombre de Euler. Este es su teorema geométrico...