jueves, 23 de noviembre de 2017

691. Las coronas. RESOLUCIÓN

    Para el reto de la semana había traído un dibujo: un círculo inscrito en un triángulo equilátero inscrito en un círculo inscrito en un cuadrado inscrito en un círculo inscrito en un hexágono regular inscrito en un círculo...
    El reto consistía en calcular el área de la corona verde sabiendo que la corona amarilla medía 9m2. Pepe Chapuzas contestó:

    ¡Ocho metros cuadrados, profe!

    No quería saber cómo lo había calculado. Pepe había acertado pero el reto no estaba resuelto sin explicaciones...
    ¡Da una explicación y resuelve tú el reto!

SOLUCIÓN

    Nina Guindilla se llevó el reto con la siguiente explicación:

    Mire los triángulos azules, profe. Son una escuadra y dos cartabones...
    Sean  a < b < c < d  los radios de los cuatro círculos y  A < B < C < D  sus áreas. Nos dan el área de la corona amarilla  B – A = 9m2  y nos piden el área de la corona verde  D – C .
    Por el cartabón pequeño sé que la razón entre los radios de la corona amarilla es  b/a = 2  y por tanto la razón entre las áreas de los círculos correspondientes será  B/A = 4 . Así pues, resolviendo el sistema,  A = 3m2  y  B = 12m2 .
    Por la escuadra sé que la razón entre los radios de la corona blanca es  c/b = 2  y por tanto  C/B = 2 , por lo que  C = 2B = 24m2 .
    Por el cartabón grande sé que la razón entre los radios de la corona verde es  d/c = 2/3  y por tanto  D/C = 4/3 , por lo que  D = 32m2  y  D – C = 32m2 – 24m2 = 8m2 .

    Nina Guindilla hizo un buen trabajo...
    ¿Qué círculo tiene la misma área que una corona circular?

RESOLUCIÓN

    Esta fue la respuesta de Yoyó Peluso:

    Mire, profe. Si  R  y  r  son los radios de la corona circular, entonces el área de la corona es  


π·R– π·r2  =  π·(R– r2)  =   π·(R r)·(R – r)

     Por lo tanto, el área es igual a la de la elipse de semiejes  R + r  y  R – r , y a la del círculo de radio  ((R r)·(R – r)) .

    Yoyó presentó un dibujo como explicación...
    Los detalles se dejan al lector...


No hay comentarios:

Publicar un comentario