Dear Teacher:
I may take the side of the square A as length unit, may I not? So, the area of the square A is 1, right? I have to prove that the area of the triangle A is 1 too. Look at the angles α, β, σ, τ, and sides s, t, below...
Area =
= s · t · sinβ / 2 =
= s · t · sin(90°−σ−τ) / 2 =
= s · t · cos(σ+τ) / 2 =
= s · t · (cosσ · cosτ − sinσ · sinτ ) / 2 =
= (1 · s · cosσ) · (1 · t · cosτ) / 2 − (s · sinσ) · (t · sinτ) /
2 =
I apply the law of cosines and the law of sines...
= (12 + s2 − sin2α) ·
(12 + t2 − cos2α) / 8
− sinα · sin(90°+α) · cosα · sin(180°−α) / 2
=
= (1+12−2·sinα·cos(90°+α))·(1+12−2·cosα·cos(180°−α))/8 − sinα·cosα·cosα·sinα/2 =
= (2 + 2 · sinα · sinα) · (2 + 2 · cosα · cosα) / 8 − sin2α · cos2α / 2 =
= (1
+ 1 · sin2α) · (1
+ 1 · cos2α) / 2 − sin2α · cos2α / 2
=
= (1 + sin2α + cos2α + sin2α · cos2α − sin2α · cos2α) / 2
=
= (1 +
1 + 0) / 2 =
= 1
No hay comentarios:
Publicar un comentario