No. No se trataba de parientes, sino de unos números naturales primos peculiares. Pepe Chapuza había escrito cinco de ellos en la pizarra... y una fórmula...
Busca información y ya nos contarás...
SOLUCIÓN
Niña Guindilla empezó con los números de Fermat...
Mire, profe. Un número es de Fermat si responde a la fórmula que escribió Pepe para algún natural n. Pues un primo de Fermat es un número de Fermat primo... Pepe ha escrito los cinco primeros números de Fermat y los cinco son primos, esto es, son primos de Fermat... Fermat conjeturó que todos "sus" números eran primos pero Euler descompuso el sexto (4294967297 es divisible por 641) y otros han descompuesto otros. De hecho no se ha encontrado aún ningún otro primo de Fermat.
Hay una relación entre los primos de Fermat y los polígonos regulares construibles con regla y compás... Averígualo...
RESOLUCIÓN
Mire, profe. El teorema de Gauss-Wantzel afirma que un polígono regular de N lados es construible con regla y compás si y solo si en la factorización de N solo aparecen el 2 y/o primos de Fermat... A lo largo de la historia se ha conseguido construir los polígonos regulares correspondientes a los cinco (primeros) primos de Fermat... Son (por ahora) los primordiales para la construcción de los demás...
Yoyó Gaviota además nos recordó que en clase de dibujo habían enseñado a construir el triángulo equilátero, el cuadrado, el pentágono regular, el hexágono regular y otros con regla y compás..., pero el heptágono regular no se puede... Siete no es un primo de Fermat...
No hay comentarios:
Publicar un comentario