Páginas

miércoles, 20 de junio de 2018

1539. Área máxima... RESOLUCIÓN

    Profe, mire. El área de una elipse mide  π .
    Halla la mayor área posible de un triángulo inscrito en la elipse
    Comprueba que el baricentro de un triángulo inscrito de área máxima tiene que coincidir con el centro de la elipse. 
    Comprueba que los tres segmentos elípticos entre la elipse y este triángulo tendrán la misma área.

    Este problema propuesto por Pepe Chapuzas lo dejamos como reto de fin de semana...

SOLUCIÓN

    Nina Guindilla "escaló"...

    Mire, profe. Sean  a  y  b  son los semiejes de la elipse. Su área mide  a·b·π = π , por lo que resulta que  b = 1/a . La ecuación reducida de la elipse será

x2/a2 + y2·a2 = 1

    Si consideramos los cambios de escala  X =  x/a ,  Y =  y·a , la elipse se transforma en una circunferencia de radio  1  centrada en  (0, 0) 

X2+Y2 = 1

    El área del círculo de radio 1 mide  π  también, por lo que estos cambios de escala distorsionan las formas pero no modifican las áreas. (Lo que se contrae en un eje se expande en el otro.)
    Como los triángulos de mayor área inscritos en una circunferencia son equiláteros,
   
su área medirá  3 · 3/2 / 2  =  33/4 que será el área máxima pedida. (Para una elipse cualquiera de semiejes  a  y  b  la solución sería  a·b·33/4 .)
    Además, los tres segmentos circulares entre la circunferencia y el triángulo equilátero tienen la misma área, evidentemente, por lo que los tres segmentos elípticos iniciales también tendrán la misma área.
    Y como los cambios de escala transforman baricentros en baricentros, y como el baricentro del triángulo equilátero cae en el centro de la circunferencia..., tenemos aseguradas todas las afirmaciones de Pepe...

    Creo que todavía hay que justificar que los triángulos de mayor área inscritos en una circunferencia son equiláteros...

RESOLUCIÓN

     Mire, profe. Un triángulo escaleno inscrito en una circunferencia no puede tener área máxima porque siempre hay un triángulo no escaleno (con al menos dos lados iguales) con área mayor: un triángulo con la misma base y mayor altura. (Si fuera isósceles el lado desigual sería la base.) Evidntemente, el centro del círculo no cae fuera de este triángulo no escaleno.
     En los triángulos no escalenos inscritos existe esta relación entre su base  b  y su altura  h

(h–1)2 + (b/2)2 = 1
b2 = 8h – 4h2

    Por lo tanto el cuadrado del área del triángulo en función de  h  es...

(b·h/2)2 = b2·h2/4 = (8h–4h2h2/4 = 2h3 – h4

cuya derivada respecto de  h  se anula si
6h2 – 4h3 = 0
6 – 4h = 0
h = 6/4 = 1,5

que es la altura de un triángulo equilátero inscrito, y para la que el área del triángulo es máxima ya que la segunda derivada del cuadrado del área

12h – 12h2 = 12·h·(1–h) = 12·1,5·(–0,5)
es negativa...

    Quedaba claro para Yoyó Peluso que si el cuadrado del área es máxima, el área también será máxima...

No hay comentarios:

Publicar un comentario