Páginas

miércoles, 27 de diciembre de 2017

695. Estrellitas de 5 puntas (2ª parte). RESOLUCIÓN

    Ya sabemos que Pepe Chapuzas es experto en fabricar estrellas irregulares de 5 puntas. ¿Qué pensará mientras las hace? Él mismo se delata:
    Mire, profe. Una cónica queda determinada por cinco puntos, ¿verdad? Pues, cada estrella de 5 puntas determina su cónica circunscrita, esto es, la que pasa por los 5 puntos de las puntas...
    Una cónica  z  tiene por ecuación implícita  z : Z(x, y) = 0 , donde  Z(x, y)  representa un polinomio de 2º grado. Por tanto


Z(x, y) = a x2 + b xy + c y2 + d x + e y + f 
y
z : a x2 + b xy + c y2 + d x + e y + f = 0

    Para calcular  a ,  b ,  c ,  d ,  e  y  f  a partir los de 5 puntos habría que sustituir  x  e  y  por las coordenadas de tales puntos en  Z(x, y) = 0 ... y así se obtendría un sistema homogéneo de 5 ecuaciones con 6 incógnitas... Pero solo de pensarlo... ¡Yuyu! ¿Habrá algún atajo?

    Pepe propuso los puntos A(0, 6), B(4, 5), C(2, 7), D(9, 3) y E(2, 1). Observa que algún número se repite... Pepe es así...
    Calcula la ecuación de la cónica... ¡A atajar!

SOLUCIÓN

    Atajar es una de las especialidades de Nina Guindilla...

    Profe, mire. Aparquemos de momento el punto E.
    Consideremos la rectas  
r : R(x, y) = 0  que pasa por A y por B,  
s : S(x, y) = 0  que pasa por C y por D, 
t : T(x, y) = 0  que pasa por A y por C  y
u : U(x, y) = 0  que pasa por B y por D.

    Calculemos los polinomios de primer grado R(x, y), S(x, y), T(x, y) y U(x, y)...


R(x, y) = (5–6)x + (0–4)y +  6·4 – 0·5 = – x – 4y + 24
S(x, y) = (3–7)x + (2–9)y + 7·9 – 2·3 = – 4x – 7y + 57
T(x, y) = (7–6)x + (0–2)y + 6·2 – 0·7 = x – 2y +12
U(x, y) = (3–5)x + (4–9)y + 5·9 – 4·3 = – 2x – 5y + 33

    El par de rectas r y s es una cónica degenerada  v : V(x, y) = 0  con


V(x, y) = R(x, y) · S(x, y) =  (– x – 4y + 24) · (– 4x – 7y + 57) =
= 4x2 + 23xy + 28y2 – 153x – 396y + 1368

    El par de rectas t y u es otra cónica degenerada  w : W(x, y) = 0  con


W(x, y) = T(x, y) · U(x, y) = (x – 2y +12) · (– 2x – 5y + 33) =
= – 2x2 – xy + 10y2 + 9x – 126y + 396

    Estas 2 cónicas degeneradas pasan por los puntos A, B, C y D... 
    Y ahora, por fin, le toca el turno al punto E... 
    La cónica  z : Z(x, y) = 0  con


Z(x, y) = W(2, 1) · V(x, y) – V(2, 1) · W(x, y) =
= 288 · (4x2 + 23xy + 28y2 – 153x – 396y + 1368) – 756 · (– 2x2 – xy + 10y2 + 9x – 126y + 396) =
= 2664x+ 7380xy + 504y2– 50868x – 18792y + 94608

pasa por los 5 puntos A, B, C, D y E porque las coordenadas de todos estos puntos satisfacen la ecuación de la cónica:
z : 2664x+ 7380xy + 504y2– 50868x – 18792y + 94608 = 0

    Nina prosiguió:

    Profe, mire. Además de la cónica circunscrita, la estrella de 5 puntas determina también una cónica inscrita, y además otra cónica que pasa por los 5 puntos dobles. ¿Habrá alguna otra estrella de 5 puntas que tenga la misma cónica circunscrita, la misma cónica inscrita y la misma cónica que pasa por los puntos dobles?

    Ahí queda la pregunta...

RESOLUCIÓN

    Si la pregunta de Nina parecía descabellada, la respuesta de Yoyó Peluso lo pareció aún más:

    Profe, según el porisma de Poncelet, hay infinitas estrellas de 5 puntas que comparten las 3 elipses. Y para muestra un botón:

    Para el lector queda averiguar qué tipos de cónicas pueden ser la circunscrita, la inscrita y la que pasa por los puntos dobles...

viernes, 22 de diciembre de 2017

694. Centro de gravedad. RESOLUCIÓN

    Había mandado calcular el centro de gravedad de un cuadrilátero homogéneo. Pepe Chapuzas explicó cómo había encontrado el punto pero no demostró que tal punto fuera realmente en centro de gravedad... 
    Mire, profe...
    Sean A, B, C y D los vértices consecutivos del cuadrilátero. 
    Trazamos los 8 segmentos que unen los vértices con los puntos medios de sus lados opuestos, en azul los de A y C y en rosa los de B y D. 
    Llamamos E y F a las intersecciones de los segmentos azules y G y H a las intersecciones de los segmentos rosas como se observa en la figura.
    Trazamos en morado los segmentos EF y GH. Y... ¡atención!: la intersección de estos es el centro de gravedad I del cuadriátero ABCD.

    ¿Quién demuestra que este punto es efectivamente el centro de gravedad buscado?

SOLUCIÓN

    Mire, profe...
    Si trazamos la diagonal AC, el cuadrilátero queda dividido en dos triángulos cuyos baricentros son precisamente E y F, por lo que el centro de gravedad I del cuadrilátero estará alineado con E y F.

    Si trazamos la diagonal BD, el cuadrilátero queda dividido en otros dos triángulos cuyos baricentros son precisamente G y H, por lo que el centro de gravedad I también estará alineado con G y H.

    En conclusión, I es el punto de intersección de los segmentos EF y GH.

    Estaba claro que el razonamiento de Nina Guindilla se había realizado con cuadriláteros convexos y que, con los remiendos pertinentes, podría aplicarse también a cuadriláteros cóncavos... Nina terminó con una pregunta intrigante y enigmática:

    ¿El centro de gravedad de un cuadrílatero coincide con el de su paralelogramo de Wittenbauer?

RESOLUCIÓN

    Yoyó Peluso se acordaba de que el paralelogramo de Wittenbauer pasaba J, J', K, K', L, L', M y M', los puntos de trisección de los lados del cuadrilátero, y lo dibujó en rojo (en un cuadrilátero convexo).
    Empezó a trabajar con los vectores de posición:

    Mire, profe.  OE = (OA+OB+OC):3 ,  OF = (OA+OC+OD):3 ,  OG = (OA+OB+OD):3  y  OH = (OB+OC+OD):3  porque son baricentros de triángulos. Por lo tanto  EF = BD:3  y  GH = AC:3 . Es decir, los segmentos morados son paralelos a las diagonales verdes y miden la tercera parte... Así que tenemos las equipolencias  EF = J'J = LL'  y  GH = KK' = M'M. Sea N la intersección de las diagonales del cuadrilátero. Como las distancias del centro de gravedad I a G y a H son proporcionales a las áreas de los triángulos BCD y ABD, y estas son proporcionales a las distancias de N a C y a A, tenemos que  IG = CN:3 . Análogamente  IH = AN:3 ,  IE = BN:3  e  IF = DN:3 . Si prolongamos los segmentos EF y GH hasta que corten al paralelogramo de Wittenbauer en P, Q, R y S como se muestra en la figura, entonces las distancias de I a P y a Q son iguales, del mismo modo son iguales las distancias de I a R y a S, lo que prueba que P, Q, R y S son los puntos medios del paralelogramo de Wittenbauer e I es su centro de gravedad. (Aunque no se muestre en el dibujo, I es la intersección de las diagonales del paralelogramo de Wittenbauer.)

    Aquí dejamos los razonamientos del esbozo de la demostración de Yoyó... El que desee atar los cabos sueltos, que ate...

sábado, 16 de diciembre de 2017

693. El cubo mágico. RESOLUCIÓN

    Pepe Chapuzas dibujó un cubo en perspectiva caballera. Era un cubo transparente porque se veían sus 6 caras, sus 8 vértices y sus 12 aristas. Por supuesto se trataba de un reto:
    Mire profe. Hay que numerar los vértices del 1 al 8 de manera que los vértices de cada cara sumen siempre lo mismo...

    Era un reto para la clase. La clase tenía la palabra...

SOLUCIÓN

    Nina Guindilla tomó la palabra:

    Profe, mire. La suma en todas las caras es 18:

    Nina, que aún tenía la palabra, aprovechó para proponer otro reto:

    Hay que numerar las aristas del 1 al 12 de manera que las aristas de cada cara sumen siempre lo mismo...

RESOLUCIÓN

    Yoyó Peluso no tomó la palabra. Se limitó a numerar las aristas en la pizarra así:

    Efectivamente, la suma en todas las caras era ahora 26.