viernes, 28 de octubre de 2016

676. El tercer teorema japonés. RESOLUCIÓN

    En el bloc de dibujo de Pepe Chapuzas hay, como es natural, dibujos..., pero también, y esto es lo que nos interesa ahora, teoremas. Me llamó la atención este teorema relacionado con un dibujo de tangencias...
    Las tres circunferencias eran tangentes entre sí y a una recta... En el margen de la lámina se leía...

    Tercer teorema de Mikami y Kobayashi (o tercer teorema japonés). Si r, s y t son, de menor a mayor, los radios de las tres circunferencias, entonces 1/r = 1/s + 1/t.

    Demuéstralo...

SOLUCIÓN

    Nina Guindilla dibujó y coloreó tres triángulos rectángulos...
    Mire, profe. Por el teorema de Pitágoras, los tres lados del triángulo rectángulo azul son t+s, t–s y ((t+s)2–(t–s)2) = 2(ts); los tres del verde son t+r, t–r y ((t+r)2–(t–r)2) = 2(tr); y los tres del lila son s+r, s–r y ((s+r)2–(s–r)2) = 2(sr). Por lo tanto 2(ts) =  2(tr) + 2(sr) y, dividiendo todo entre 2(tsr) nos queda 1/r = 1/s + 1/t, que es lo que teníamos que demostrar...

    Si hay un tercer teorema japonés es porque hay un primero y un segundo... Búscalos...

RESOLUCIÓN

    Yoyó Peluso dibujó en su bloc los dos teoremas:
    Profe, mire. El primer teorema japonés afirma que si triangulamos un polígono convexo inscrito en un círculo a partir de un vértice, entonces la suma de las circunferencias inscritas en los triángulos no depende del vértice elegido.
    El segundo teorema japonés afirma que los incentros de los triángulos que se obtienen al partir un cuadrilátero inscrito en un círculo por una diagonal y los incentros del los triángulos que se obtienen al partirlo por la otra diagonal son vértices de un rectángulo.

No hay comentarios:

Publicar un comentario