Páginas

lunes, 12 de mayo de 2014

175. Inscrito y circunscrito

    En un examen de Trigonometría se pedía calcular el área de un triángulo. Pero Pepe Chapuzas la calculó sin usar las razones trigonométricas. Utilizó para ello la fórmula de Herón y eso que no la habíamos visto en clase... (El enunciado está en negro y la respuesta de Pepe en azul).
    Le pregunté a Pepe por la fórmula y la respuesta fue sorprendente...

    La fórmula de Herón es el límite cuando d tiende a 0 de la fórmula de Brahmagupta. Me explico. La fórmula de Brahmagupta nos da el área de un cuadrilátero inscrito en una circunferencia a partir de sus cuatro lados, a, b, c y d. Si el lado d fuera tan diminuto como un punto, tendríamos un triángulo (que siempre está inscrito en su circunferencia circunscrita) y la fórmula se convierte en la de Herón. ¿Lo ve?
    Visto de esa manera Pepe tenía razón, pero aún quedaba otra sorpresa...

    Profe, mire. Hay cuadriláteros inscritos en una circunferencia y circunscritos en otra. (El cuadrado sería uno de ellos). Pues resulta que, para estos cuadriláteros, la fórmula de Brahmagupta se simplifica...
    Demuestra esta última fórmula.

No hay comentarios:

Publicar un comentario