Profe, ¡qué despiste! Pensé que había terminado el examen... Me puse a repasar... y cuando faltaban dos minutos para que sonara la campanilla le di la vuelta a la hoja de enunciados y... ¡allí estaba escondido! ¡Me faltaba un límite por hacer!
No he visto a nadie más despistado que Pepe Chapuzas. Cuando corregí su examen esto fue lo que me encontré:
Como veis, a Pepe no le dio tiempo de explicar lo que había hecho...
¿Es correcto el resultado? Explica tú todos los pasos. Espero tu respuesta...
Páginas
▼
martes, 31 de diciembre de 2013
sábado, 28 de diciembre de 2013
67. Lotería y superstición
Pepe Chapuzas me preguntó cuál era el criterio de divisibilidad del 19. Sospeché que me estaba poniendo a prueba así que yo, a mi vez, le pregunté cuál era su interés por saberlo. Entonces Pepe me relató la siguiente historia:
Profe, mire. Mis padres siempre van a los mismos loteros para comprar los décimos de Navidad porque dicen que son muy "sinceros". Tienen este letrero: "vendemos lotería para coleccionar... porque tocar nunca toca..., y si toca... le devolvemos su dinero"... Mis padres son algo supersticiosos y este año quieren números que sean múltiplos de 19, a saber por qué... Fui con ellos, y con una calculadora por si las moscas, pero cuando llegamos, a la calculadora se le había agotado la batería... Nos vendieron los números 31606, 61845, 18392, 85163 y 16207. Les pregunté a los loteros cómo sabían que eran múltiplos de 19 si no habían hecho las divisiones y uno de ellos me contestó que había aplicado de cabeza el criterio de divisibilidad del 19... Al ver mi cara de extrañeza me fue escribiendo en un papelito la prueba para el 16207... Al 16207 le quitó la última cifra, esto es, tachó el 7, y le quedó 1620; luego duplicó el 7 tachado, es decir, 7·2=14; y este 14 se lo sumó al 1620, o sea, 1620+14=1634. Con este número hizo lo mismo, le tachó la última cifra y le sumó el doble de la cifra tachada, y repitió el proceso hasta que quedó un número menor que 20. Me dijo que si este número fuera 19 (como así pasó al final) el número inicial (aquí el 16207) sería un múltiplo de 19.
Comprueba con este criterio que todos los números comprados son múltiplos de 19 excepto uno. ¿Cuál?
¿Hay algún criterio de divisibilidad similar para el 29, el 39 y el 49...?
¿Hay algún criterio de divisibilidad similar para el 7, el 13 y el 17...?
Profe, mire. Mis padres siempre van a los mismos loteros para comprar los décimos de Navidad porque dicen que son muy "sinceros". Tienen este letrero: "vendemos lotería para coleccionar... porque tocar nunca toca..., y si toca... le devolvemos su dinero"... Mis padres son algo supersticiosos y este año quieren números que sean múltiplos de 19, a saber por qué... Fui con ellos, y con una calculadora por si las moscas, pero cuando llegamos, a la calculadora se le había agotado la batería... Nos vendieron los números 31606, 61845, 18392, 85163 y 16207. Les pregunté a los loteros cómo sabían que eran múltiplos de 19 si no habían hecho las divisiones y uno de ellos me contestó que había aplicado de cabeza el criterio de divisibilidad del 19... Al ver mi cara de extrañeza me fue escribiendo en un papelito la prueba para el 16207... Al 16207 le quitó la última cifra, esto es, tachó el 7, y le quedó 1620; luego duplicó el 7 tachado, es decir, 7·2=14; y este 14 se lo sumó al 1620, o sea, 1620+14=1634. Con este número hizo lo mismo, le tachó la última cifra y le sumó el doble de la cifra tachada, y repitió el proceso hasta que quedó un número menor que 20. Me dijo que si este número fuera 19 (como así pasó al final) el número inicial (aquí el 16207) sería un múltiplo de 19.
Comprueba con este criterio que todos los números comprados son múltiplos de 19 excepto uno. ¿Cuál?
¿Hay algún criterio de divisibilidad similar para el 29, el 39 y el 49...?
¿Hay algún criterio de divisibilidad similar para el 7, el 13 y el 17...?
viernes, 27 de diciembre de 2013
66. El calendario de las abejas
Pepe Chapuzas llegó a clase con la cara hinchada. Explicó que se debía a la picadura de una abeja porque el fin de semana estuvo practicando apicultura en un colmenar. Pero a pesar del escozor que sentía en la cara estaba muy contento porque había aprendido muchas cosas. Por ejemplo, que la reina era la madre de todas las abejas del enjambre: de las obreras que lo hacían todo y de los zánganos que no hacían nada. O que en cada colmena había un panal que en realidad era un calendario perpetuo... Lo primero lo sabíamos todos pero lo segundo nos pilló de sorpresa. Pepe se congratuló en mostrárnoslo:
Para las abejas los puntos cardinales no son 4 sino 6. ;-) Estos 6 puntos cardinales se podrían llamar chapuceramente E, NE, NO, O, SO y SE. Y digo chapuceramente porque en realidad se corresponden con los ángulos de 0º, 60º, 120º, 180º, 240º y 300º respectivamente.
El calendario en sí consiste en un panal de 37 celdillas como se ve en el dibujo siguiente. Bueno, las letras las he puesto yo e indican los días de la semana como en los taxis: L, M, X, J, V, S y D. (Las abejas lo hacen con diferentes mieles).
Para saber qué día de la semana corresponde a una fecha determinada (día/mes/año) solo hay que avanzar tres celdillas (o dos, o una o ninguna) a partir de la celdilla central (el domingo central). Se avanza una celdilla (o ninguna) por el día, otra celdilla (o ninguna) por el mes, y otra celdilla (o ninguna) por el año. La dirección y el sentido de cada avance vienen determinados por las siguientes tablas teniendo en cuenta que para los que quedan en las casillas centrales no se realiza ningún avance.
Hay dos tablas de años: una para el siglo XX y otra para el siglo XXI (las abejas no entran en polémicas sobre cuándo empiezan y terminan los siglos). Los años bisiestos aparecen en rojo y los demás en azul. Esto afecta a los avances de enero y de febrero, que por ello aparecen también en estos colores. Observad que 2000 fue bisiesto mientras que 1900 no lo fue.
Por ejemplo, el día 1 de febrero de 2014 es sábado porque para el 1 avanzamos al NE, para febrero (azul) avanzamos al SE y para el 2014 (azul) avanzamos al E. Y no importa el orden NE-E-SE, E-SE-NE... Es como la suma de vectores, que es conmutativa...
Pepe tiene abejas zumbonas en la cabeza...
A ver si has entendido bien cómo funciona este calendario perpetuo. Busca el día de la semana en que el hombre pisó la luna por primera vez. Busca también el día de la semana en que naciste.
Para las abejas los puntos cardinales no son 4 sino 6. ;-) Estos 6 puntos cardinales se podrían llamar chapuceramente E, NE, NO, O, SO y SE. Y digo chapuceramente porque en realidad se corresponden con los ángulos de 0º, 60º, 120º, 180º, 240º y 300º respectivamente.
El calendario en sí consiste en un panal de 37 celdillas como se ve en el dibujo siguiente. Bueno, las letras las he puesto yo e indican los días de la semana como en los taxis: L, M, X, J, V, S y D. (Las abejas lo hacen con diferentes mieles).
Para saber qué día de la semana corresponde a una fecha determinada (día/mes/año) solo hay que avanzar tres celdillas (o dos, o una o ninguna) a partir de la celdilla central (el domingo central). Se avanza una celdilla (o ninguna) por el día, otra celdilla (o ninguna) por el mes, y otra celdilla (o ninguna) por el año. La dirección y el sentido de cada avance vienen determinados por las siguientes tablas teniendo en cuenta que para los que quedan en las casillas centrales no se realiza ningún avance.
Hay dos tablas de años: una para el siglo XX y otra para el siglo XXI (las abejas no entran en polémicas sobre cuándo empiezan y terminan los siglos). Los años bisiestos aparecen en rojo y los demás en azul. Esto afecta a los avances de enero y de febrero, que por ello aparecen también en estos colores. Observad que 2000 fue bisiesto mientras que 1900 no lo fue.
Por ejemplo, el día 1 de febrero de 2014 es sábado porque para el 1 avanzamos al NE, para febrero (azul) avanzamos al SE y para el 2014 (azul) avanzamos al E. Y no importa el orden NE-E-SE, E-SE-NE... Es como la suma de vectores, que es conmutativa...
Pepe tiene abejas zumbonas en la cabeza...
A ver si has entendido bien cómo funciona este calendario perpetuo. Busca el día de la semana en que el hombre pisó la luna por primera vez. Busca también el día de la semana en que naciste.
martes, 24 de diciembre de 2013
65. Los números escalera
Profe, en Informática nos han hablado del sistema de numeración binaria, ya sabe: el 0 y el 1, los bits... Nos dijeron que era un sistema posicional porque el valor del 1 dependía de su posición. El 1 podía tomar los valores de la llamada progresión binaria: 1, 2, 4, 8, 16, 32, 64.... Pero cuando llegamos a los prefijos para los múltiplos, o sea, a los megas, los gigas, los teras..., resulta que no son potencias de 10 sino de 2. ¡Un kilogramo son 1000 (=103) gramos pero un kilobit son 1024 (=210) bits! ¿Qué chapuza es esta de utilizar los mismos prefijos para distintas cantidades?
A Pepe Chapuzas le extrañó, y con toda razón, esta imprecisión. Le contesté que cuando quisieron poner orden en este asunto era demasiado tarde, pues se crearon unos prefijos propios para el sistema binario (kibi, mebi, gibi, tebi, pebi...) que no cuajaron porque los prefijos decimales (kilo, mega, giga, tera, peta...) eran ya demasiado populares.
En esto le propuse a Pepe que me demostrara que los términos de la progresión binaria 1, 2, 4, 8, 16, 32, 64... eran los únicos números naturales que no se podían obtener como suma de números naturales consecutivos, como por ejemplo el 15 = 4 + 5 + 6 = 7 + 8... Pepe me enseñó un dibujo.
Profe, mire. El 15 es un número escalera:
Al día siguiente Pepe me enseñó más dibujos que representaban una cadena de demostraciones:
Profe, mire. He demostrado primero que si en la suma de números naturales consecutivos hay una cantidad impar de sumandos entonces la suma es un múltiplo de un impar distinto de 1, y si hay una cantidad par de sumandos entonces también la suma es un múltiplo de un impar distinto de 1, con lo que demuestro que los términos de la sucesión binaria no son números escalera porque no tienen divisores impares distintos de 1. Mire los dibujos:
Después demostré que si un número natural N tiene un divisor impar K distinto de 1 y si K2 < 2N entonces N es suma de K números naturales consecutivos, pero si K2 > 2N entonces N es suma de 2N:K números naturales consecutivos, por lo tanto los números de la progresión binaria son los únicos naturales que no son números escalera.
Intenta rehacer las demostraciones de Pepe Chapuzas siguiendo sus indicaciones y con ayuda de sus dibujos.
A Pepe Chapuzas le extrañó, y con toda razón, esta imprecisión. Le contesté que cuando quisieron poner orden en este asunto era demasiado tarde, pues se crearon unos prefijos propios para el sistema binario (kibi, mebi, gibi, tebi, pebi...) que no cuajaron porque los prefijos decimales (kilo, mega, giga, tera, peta...) eran ya demasiado populares.
En esto le propuse a Pepe que me demostrara que los términos de la progresión binaria 1, 2, 4, 8, 16, 32, 64... eran los únicos números naturales que no se podían obtener como suma de números naturales consecutivos, como por ejemplo el 15 = 4 + 5 + 6 = 7 + 8... Pepe me enseñó un dibujo.
Profe, mire. El 15 es un número escalera:
Al día siguiente Pepe me enseñó más dibujos que representaban una cadena de demostraciones:
Profe, mire. He demostrado primero que si en la suma de números naturales consecutivos hay una cantidad impar de sumandos entonces la suma es un múltiplo de un impar distinto de 1, y si hay una cantidad par de sumandos entonces también la suma es un múltiplo de un impar distinto de 1, con lo que demuestro que los términos de la sucesión binaria no son números escalera porque no tienen divisores impares distintos de 1. Mire los dibujos:
Después demostré que si un número natural N tiene un divisor impar K distinto de 1 y si K2 < 2N entonces N es suma de K números naturales consecutivos, pero si K2 > 2N entonces N es suma de 2N:K números naturales consecutivos, por lo tanto los números de la progresión binaria son los únicos naturales que no son números escalera.
Intenta rehacer las demostraciones de Pepe Chapuzas siguiendo sus indicaciones y con ayuda de sus dibujos.
martes, 17 de diciembre de 2013
64. Deletrea las cifras y descifra las letras
Ayer pillé a Pepe Chapuzas pasando una notita en clase. Tuve que llamarle la atención y pedirle el papelito. Se disculpó y me entregó el "arma del delito"... Cuando acabó la clase cotilleé el contenido de lo confiscado. Era un trabalenguas y un criptograma. El criptograma era una suma donde las cifras estaban codificadas con letras:
Hay varias soluciones. Encuéntralas todas.
Y si te animas, aquí tienes más..., pero ten cuidado: no todos tienen solución.
Hay varias soluciones. Encuéntralas todas.
Y si te animas, aquí tienes más..., pero ten cuidado: no todos tienen solución.
lunes, 16 de diciembre de 2013
63. Cramer y el efecto mariposa
Profe, me han dicho unos de bachillerato que ellos resuelven los sistemas de ecuaciones lineales con unas fórmulas facilísimas. ¿Por qué no nos las enseña en vez de torturarnos con los métodos de reducción, igualación y sustitución?
A Pepe Chapuzas le habían hablado de la regla de Cramer... Estábamos haciendo ejercicios de sistemas de dos ecuaciones con dos incógnitas y accedí con gusto a su petición. Escribí en la pizarra las "fórmulas facilísimas" para estos sistemas.
En la yincana matemática de la semana Pepe se encargó de elaborar la primera prueba... Había que resolver un sistema con la regla de Cramer y sin calculadora.
Generalmente aproximábamos π con 3,14 o 3,1416. El equipo A lo hizo con 3,14 para ser más rápidos y el equipo B con 3,1416 para ser más exactos. Hicieron los cálculos y los revisaron a conciencia... No se habían equivocado en los cálculos, sin embargo los resultados que dieron eran disparatadamente diferentes... Pepe había puesto un ejercicio con trampa que me dio pie a comentar en clase el llamado "efecto mariposa", expresión matemática que se ha popularizado y que se utiliza en muy diversos ámbitos y para muchos eventos de la vida...
Comprueba que, si los denominadores no se anulan, estas fórmulas de Cramer dan la solución de un sistema de dos ecuaciones con dos incógnitas.
Calcula las soluciones que obtuvieron los dos equipos. ¿Cuál de los dos equipos superó la prueba?
Investiga qué es el efecto mariposa y cuéntanoslo.
A Pepe Chapuzas le habían hablado de la regla de Cramer... Estábamos haciendo ejercicios de sistemas de dos ecuaciones con dos incógnitas y accedí con gusto a su petición. Escribí en la pizarra las "fórmulas facilísimas" para estos sistemas.
En la yincana matemática de la semana Pepe se encargó de elaborar la primera prueba... Había que resolver un sistema con la regla de Cramer y sin calculadora.
Generalmente aproximábamos π con 3,14 o 3,1416. El equipo A lo hizo con 3,14 para ser más rápidos y el equipo B con 3,1416 para ser más exactos. Hicieron los cálculos y los revisaron a conciencia... No se habían equivocado en los cálculos, sin embargo los resultados que dieron eran disparatadamente diferentes... Pepe había puesto un ejercicio con trampa que me dio pie a comentar en clase el llamado "efecto mariposa", expresión matemática que se ha popularizado y que se utiliza en muy diversos ámbitos y para muchos eventos de la vida...
Comprueba que, si los denominadores no se anulan, estas fórmulas de Cramer dan la solución de un sistema de dos ecuaciones con dos incógnitas.
Calcula las soluciones que obtuvieron los dos equipos. ¿Cuál de los dos equipos superó la prueba?
Investiga qué es el efecto mariposa y cuéntanoslo.
domingo, 15 de diciembre de 2013
62. El orden de los factores...
Profe. ¿Cuántas factorizaciones puede tener un número natural?
Me asombró que Pepe Chapuzas me hiciera semejante pregunta. Ya habíamos explicado en clase que las descomposiciones en factores primos eran únicas para cada número natural, sin contar, eso sí, el orden de los factores... Y así se lo recordé... Entonces me enseñó Pepe en su cuaderno un dibujo de lo que parecían ser naipes de una baraja...
Mire profe. Yo ya sé que el orden de los factores no altera el producto, pero precisamente me refiero a eso, al orden de los factores, porque a veces se puede descomponer un número natural de varias maneras.
Pepe había ilustrado las factorizaciones con unos círculos tan chapuceros que parecían aceitunas. Viéndolos era obvio: los primos no se podían descomponer (por eso eran primos), las factorizaciones de las potencias de los primos solo se podían hacer de una manera (pues todos los factores eran iguales), y las demás factorizaciones se podían obtener de varias maneras (según el orden de los factores).
Investiga qué son los fractales. Busca una página web sobre fractales que te llame la atención. Anota su URL.
Dibuja los naipes correspondientes a las factorizaciones de 13, 14, 15 y 16.
Espero tu respuesta por e-mail.
Me asombró que Pepe Chapuzas me hiciera semejante pregunta. Ya habíamos explicado en clase que las descomposiciones en factores primos eran únicas para cada número natural, sin contar, eso sí, el orden de los factores... Y así se lo recordé... Entonces me enseñó Pepe en su cuaderno un dibujo de lo que parecían ser naipes de una baraja...
Mire profe. Yo ya sé que el orden de los factores no altera el producto, pero precisamente me refiero a eso, al orden de los factores, porque a veces se puede descomponer un número natural de varias maneras.
Pepe había ilustrado las factorizaciones con unos círculos tan chapuceros que parecían aceitunas. Viéndolos era obvio: los primos no se podían descomponer (por eso eran primos), las factorizaciones de las potencias de los primos solo se podían hacer de una manera (pues todos los factores eran iguales), y las demás factorizaciones se podían obtener de varias maneras (según el orden de los factores).
La respuesta a su pregunta inicial era "permutaciones con repetición" pero faltaba mucho para ver Combinatoria. Al margen de esto, me gustaron tanto los dibujos de Pepe que creo que los utilizaré para introducir el tema de los fractales.
Investiga qué son permutaciones con repetición. ¿De cuántas formas se puede obtener la factorización de 42000?Investiga qué son los fractales. Busca una página web sobre fractales que te llame la atención. Anota su URL.
Dibuja los naipes correspondientes a las factorizaciones de 13, 14, 15 y 16.
Espero tu respuesta por e-mail.
viernes, 13 de diciembre de 2013
61. Una mosca supersónica
Aquí tenéis un acertijo matemático que planteó Pepe Chapuzas a sus compañeros. Y que ahora os plantea también a vosotros.
Dos locomotoras (no tripuladas) circulaban al encuentro por la misma vía. Iban ambas a 120 km/h. Cuando estaban separadas 60 km una mosca supersónica empezó a volar de una a otra a una velocidad doble que la velocidad del sonido. (La velocidad del sonido es de 340 m/s). Cuando llegaba a una locomotora rebotaba y se dirigía a la otra. Y así fue rebotando una y otra vez, siempre a la misma velocidad, hasta que al final las locomotoras chocaron y la mosca murió espachurrada. ¿Cuántos kilómetros voló la mosca supersónica?
Dos locomotoras (no tripuladas) circulaban al encuentro por la misma vía. Iban ambas a 120 km/h. Cuando estaban separadas 60 km una mosca supersónica empezó a volar de una a otra a una velocidad doble que la velocidad del sonido. (La velocidad del sonido es de 340 m/s). Cuando llegaba a una locomotora rebotaba y se dirigía a la otra. Y así fue rebotando una y otra vez, siempre a la misma velocidad, hasta que al final las locomotoras chocaron y la mosca murió espachurrada. ¿Cuántos kilómetros voló la mosca supersónica?
jueves, 12 de diciembre de 2013
60. ¡Marchando una de cenefas!
En la última revisión de cuadernos me llamó la atención la manera que tiene Pepe Chapuzas de decorar su cuaderno: el título de cada tema viene acompañado de un adorno en forma de cenefa. Bueno, el último tema carecía de cenefa... Le pregunté a Pepe por estos adornos y me contestó que realmente no eran adornos y que cada cenefa correspondía a un tema particular y no se podían intercambiar. Quedé intrigado por las explicaciones de Pepe. Le hice notar que faltaba la última cenefa y me comentó que era porque se le había gastado el rotulador rojo...
Aquí reproduzco las cenefas
Adelántate a Pepe y dinos cómo es la cenefa que falta. Mándame el dibujo por correo electrónico.
Aquí reproduzco las cenefas
Adelántate a Pepe y dinos cómo es la cenefa que falta. Mándame el dibujo por correo electrónico.
miércoles, 11 de diciembre de 2013
59. Las PG y las PA van en tándem
Profe mire, los números de la izquierda están en PG (progresión geométrica). Y sus logaritmos (decimales), que son los números de la derecha, están en PA (progresión aritmética). He descubierto que los logaritmos de las PG son PA. Y si tomo logaritmos en las fórmulas de las PG me salen las fórmulas de las PA... ¡Ya no tengo que aprenderme tantas fórmulas! Las PG y las PA van en tándem...
Pepe Chapuzas "casi" tenía razón. Tuve que puntualizar su intervención. Le indiqué, para empezar, que para obtener una PA la PG tenía que ser positiva, si no, no se podría tomar logaritmos; y que si tomaba logaritmos en la fórmula de la suma de términos de una PG no salía ninguna fórmula de las PA...
Demuestra que el logaritmo de una PG positiva es una PA.
Obtén la fórmula del término general de una PA tomando logaritmos en la fórmula del término general de una PG.
Obtén la fórmula de la suma de términos de una PA tomando logaritmos en la fórmula del producto de términos de una PG.
Si te sale me lo explicas...
Pepe Chapuzas "casi" tenía razón. Tuve que puntualizar su intervención. Le indiqué, para empezar, que para obtener una PA la PG tenía que ser positiva, si no, no se podría tomar logaritmos; y que si tomaba logaritmos en la fórmula de la suma de términos de una PG no salía ninguna fórmula de las PA...
Demuestra que el logaritmo de una PG positiva es una PA.
Obtén la fórmula del término general de una PA tomando logaritmos en la fórmula del término general de una PG.
Obtén la fórmula de la suma de términos de una PA tomando logaritmos en la fórmula del producto de términos de una PG.
Si te sale me lo explicas...
58. Los quesos de Tic y Tac (2ª parte)
El mal tiempo insistía y Pepe Chapuzas con sus historias también:
La última vez que visité a los ratoncillos Tic y Tac estaban alborotados. Don Arquímedes les había explicado por fin los volúmenes... Pero no estaban alborotados por eso sino porque habían fabricado una máquina para resolver ecuaciones de tercer grado siempre que las soluciones estuvieran comprendidas entre –10 y 10 (esta limitación se debía a la escasez de queso). En realidad la máquina consistía en una balanza con dos brazos rectos y cuatro platillos. Los brazos eran sencillamente una regla numerada. A la izquierda estaban los números negativos, –1, –2, –3..., y a la derecha los positivos, 1, 2, 3... En el fiel estaba el 0. Me fueron explicando el funcionamiento de veras entusiasmados... Me dijeron que tenían tres quesos y que los tres medían 10 cm de altura. El primer queso tenía forma de pirámide egipcia y el cuadrado de la base era de 300 cm2. El segundo tenía forma de escuadra (o medio sándwich) de 1 cm de espesor y estaba apoyado sobre el canto más largo. El tercero tenía forma de tiza y la base era de 1 cm2. Con las fórmulas de don Arquímedes habían calculado que si rebajaban x cm la altura de los tres quesos mediante un corte horizontal, entonces los quesos menguaban x3 cm3, x2 cm3 y x cm3 respectivamente. Había además un cuarto queso pequeñito: era un cubito de 1 cm3 de volumen que, según me advirtieron, no se podía cortar en absoluto...
Llegó la hora de poner un ejemplo: x3 – 8x2 + 5x + 14 = 0. Entonces Tic y Tac colgaron los platillos en los números 1, –8, 5 y 14 de la regla, que eran los coeficientes de la ecuación y calibraron la balanza. El quesito cúbico lo pusieron en el platillo del 14. Después fueron cortando lonchas superfinas de los otros tres quesos horizontalmente. Ponían una loncha del primer queso en el platillo del 1, una loncha del segundo queso en el platillo del –8 y una loncha del tercer queso en el platillo del 5. Repitieron el proceso hasta que la balanza se equilibró. Los quesos habían bajado 2 cm. Entonces entendí. El queso de los platillos hacía palanca en los brazos de la balanza y la ecuación representaba la suma de los momentos de fuerza. Por tanto la solución era x = 2. Siguieron haciendo lonchas y llenando los platillos. La balanza se desequilibró al principio pero se equilibró de nuevo para x = 7. ¡Otra solución! Entonces se detuvieron. Les pregunté si su máquina podía calcular soluciones negativas y me respondieron que sí podía pero que necesitaban más queso...
Comprueba los cálculos de Tic y Tac. ¿Son correctos los principios en que se basa la máquina?
En la ecuación del ejemplo falta por averiguar una solución negativa ¿Cómo se podría calcular con la balanza de Tic y Tac?
Llegó la hora de poner un ejemplo: x3 – 8x2 + 5x + 14 = 0. Entonces Tic y Tac colgaron los platillos en los números 1, –8, 5 y 14 de la regla, que eran los coeficientes de la ecuación y calibraron la balanza. El quesito cúbico lo pusieron en el platillo del 14. Después fueron cortando lonchas superfinas de los otros tres quesos horizontalmente. Ponían una loncha del primer queso en el platillo del 1, una loncha del segundo queso en el platillo del –8 y una loncha del tercer queso en el platillo del 5. Repitieron el proceso hasta que la balanza se equilibró. Los quesos habían bajado 2 cm. Entonces entendí. El queso de los platillos hacía palanca en los brazos de la balanza y la ecuación representaba la suma de los momentos de fuerza. Por tanto la solución era x = 2. Siguieron haciendo lonchas y llenando los platillos. La balanza se desequilibró al principio pero se equilibró de nuevo para x = 7. ¡Otra solución! Entonces se detuvieron. Les pregunté si su máquina podía calcular soluciones negativas y me respondieron que sí podía pero que necesitaban más queso...
Comprueba los cálculos de Tic y Tac. ¿Son correctos los principios en que se basa la máquina?
En la ecuación del ejemplo falta por averiguar una solución negativa ¿Cómo se podría calcular con la balanza de Tic y Tac?
martes, 3 de diciembre de 2013
57. Los quesos de Tic y Tac
Era la hora del recreo y llovía a cántaros. Esperamos un poco a que escampara pero como no amainaba el temporal nos quedamos en el aula. Pepe Chapuzas, que es un cuentacuentos aficionado, nos amenizó la espera... con un cuento con cuentas.
Os voy a revelar un secreto: he descubierto dos ratoncillos en la torre del reloj... y por eso les he puesto los nombres de Tic y Tac. Como los vi hambrientos les llevé tres quesos que había en la despensa. Uno era cónico como los quesos de tetilla, otro era semiesférico como medio queso de bola y el tercero era cilíndrico como los quesos del pueblo. Me di cuenta de que los tres quesos tenían la misma anchura y la misma altura. Le di los dos primeros quesos a Tic y el tercero, que era el mayor, se lo di a Tac.
¡Venga! ¡A hacer las cuentas! Calcula los volúmenes de los quesos y las áreas de las lonchas y comprueba lo que se cuenta en el cuento. ¿Es correcto el razonamiento de Pepe?
El cuento, no obstante, no había terminado. El final lo contó durante el siguiente chaparrón.
Fui a ver a Tic y a Tac de nuevo y me habían preparado una sorpresa. En agradecimiento me obsequiaban con sendos regalitos de madera que habían tallado ellos mismos. Me hizo mucha ilusión. El de Tic era un tetraedro regular de 2 cm de arista. Y el de Tac era un elipsoide de ecuación π x2 + π y2 + 2 z2 ≤ 1. Además me aseguraron que los dos objetos tenían el mismo volumen a pesar de ser tan diferentes. No sabían calcularlo aún pero, si el artificio de las lonchas era válido, los volúmenes tenían que coincidir...
Demuéstralo. Observa el dibujo y calcula las áreas de las secciones (lonchas) y los volúmenes. Y me lo cuentas todo.
Los ratoncillos, en vez de ponerse contentos, empezaron a discutir porque los dos creían que el otro tenía más queso... Tuve que demostrarles con las fórmulas de los volúmenes, y asegurándoles que los quesos no tenían agujeros por dentro, que ambos habían recibido la misma cantidad; pero no se convencieron porque, según me contaron, en la escuela de don Arquímedes, el búho del campanario, todavía no habían llegado a los volúmenes; tan solo habían visto las áreas... Así que tuve que convencerles de otra manera... Les dije que tenían que comerse los quesos en lonchas circulares (cortadas horizontalmente).
Por cada loncha que se comiera Tac de su queso cilíndrico, Tic se comería una loncha de su queso cónico y una loncha de su queso semiesférico. Las lonchas tendrían que ser superfinas, del grosor de una molécula de queso (les aseguré que todas las moléculas de queso eran iguales ;-) y que las lonchas no se podían hacer más finas porque cuando se rompen las moléculas de queso, el queso deja de ser queso). Así, loncha a loncha, los quesos menguarían en altura a la par y se acabarían a la vez. Y como ya sabían calcular áreas podían comprobar solitos que en cada almuerzo los dos se comerían el mismo número de moléculas...
Dicho y hecho: hicieron los cálculos... y las paces..., aunque los quesos se los comieron en un día y no en lonchas precisamente.
El cuento, no obstante, no había terminado. El final lo contó durante el siguiente chaparrón.
Fui a ver a Tic y a Tac de nuevo y me habían preparado una sorpresa. En agradecimiento me obsequiaban con sendos regalitos de madera que habían tallado ellos mismos. Me hizo mucha ilusión. El de Tic era un tetraedro regular de 2 cm de arista. Y el de Tac era un elipsoide de ecuación π x2 + π y2 + 2 z2 ≤ 1. Además me aseguraron que los dos objetos tenían el mismo volumen a pesar de ser tan diferentes. No sabían calcularlo aún pero, si el artificio de las lonchas era válido, los volúmenes tenían que coincidir...
Demuéstralo. Observa el dibujo y calcula las áreas de las secciones (lonchas) y los volúmenes. Y me lo cuentas todo.